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Polynomial Evaluation Schemes 

By A. C. R. Newbery* 

Abstract. An attempt is made to define a polynomial evaluation algorithm that is 

more resistant to accumulated round-off error than the schemes of Horner and 

Clenshaw under conditions of floating-point arithmetic. An algorithm is presented 

which generally compares favorably with both. Some suggestions are made, which could 

plausibly lead to substantial further improvements. 

In [1] it was established that the total effect of rounding error for Horner's 
(nested multiplication) evaluation scheme is bounded by (e + na) P(IaI)/(1 - no), 
where the arithmetic is performed in floating-point, e is the smallest number which 
significantly adds to 1, a = e(2 + e), and P(x) n I pPrIx'. It Las noted that both 
the theoretical and the empirically observed errors vary steeply with the magnitude of 
the argument. In view of this, it seems appropriate to look into the possibility of 

replacing a given polynomial evaluation problem by an equivalent one for which the 

argument has a smaller magnitude. We are presupposing a situation in which the over- 

head costs (for transforming one problem into another) may be neglected, e.g. where 

the polynomial approximates an elementary function on a library tape. 
Let the given problem be to evaluate P(x) =-S ppx at any argument in [-1, 1] 

It was observed in [1] that any finite-domain problem can be scaled into this form. 

For convenience we assume n = 2n'. (The analysis for odd-degree polynomials is only 

trivially different.) First, we split P into its even and odd components P(x) E(x2) + 

X(D(X2), where E and (F are polynomials of degree n', n' - 1 in the argument x2; 
secondly, by writing x2 = 1,h + t with Itl <S ?h, we can rewrite E(x2) and 'F(x2) as E(t) 
and 4(t) with Itl < ?. At this point, it is clear that we can reduce the maximal argu- 
ment size from 1 to ?, which is generally advantageous; but we need to ensure that 

this advantage will not be outweighed by a growth in coefficient size which might 
occur when we transform the polynomials E, (F into E, &D. For simplicity we shall 

only look at the transformation from E to E and we shall take the global error bound 

for P(x) as 2neP(1). (We have neglected some small quantities and assigned to IaI its 

"worst" possible value of 1.) 
Defining E(s) _ znO 2rSr-z;Otp2rSr and t) ertr, the following relation 

holds between the vector e^-- (6^, e. , en)T and e- -(eo, el, en 

(1) e =Me, where 
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If we adopt the convention that the upper-triangular matrix M has a "zeroth" row and 
column, then its entries are given by mij = C,j1/2 -', where Cj,i is a binomial coefficient 

The simplified error bound for evaluating L(t) in the worst case where Itl = 1/2 is 
2en ofl,IEr (1/2)r = 2en'IIGEjj 1 where G = diag{1, 1/2, . . , 1/} We have to compare 
this with that part of the Horner method error which arises from even-order coefficients 
namely 2neEnI P2r1 = 4n'eIj]1I. Removing common factors, the comparison is 
between IIGeII1 and 2Iell. From (1) we obtain 

(2) IIGeII 1 = IIGMell 1 < IIGMII lIe IIl. 

It may be observed that GM is column-stochastic, so that IIGM1I, = 1; and, 
therefore, IIGeII1 S 11Iel . We had to beat 2111I1 in order to break even, so the pro- 
posed method always has a factor of at least 2 in its favor. The factor will be exactly 
2 only in the event that e is an equisign vector, since that is the situation in which 
the inequality (2) becomes an equality. Having established that the factor favoring 
the proposed method is at least 2, we now attempt to find an upper bound for it. 
Letting F denote the factor, which is the ratio of error bounds, we have F = 

21ll/1IIGeII . Using the fact that e = M-1',we have 

(3) F = 2IM-Ie-111/IIGell = 21I M'G-'GeIIl1/IIGe^II1 < 21IM-1G-' 1ll. 

We calculate that 

(4) M-1 = [mt] = [(-1)ijCjj/2 I], 

under the convention that we have a 'zeroth' row and column. The absolute sum of 
the kth column of M-' G-' is Ak, where 

k k 

(5) Ak = 2k I Imrkl = Ck*r2r = 3k. 
r=O r=O 

It follows that JIM-' G-1l1 = 3n and we conclude from (3) that 

(6) F < 2(3n. 

The bound (6) will be attained if, and only if e^n is the only nonzero coefficient of 
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2(t). The error arising from the odd-order coefficients (r are subject to similar bounds 
except that when n = 2n', the degree of (F is n' - 1. In general, when the parity of 
n is unrestricted, the ratio of error bounds F will be within the range 

(7) 2 < F < 2(3n), where n = entier((n - 1)/2). 

We shall denote the proposed method by E. 0. (Even-Odd). If we attempt to compare 
the three methods, Horner, Clenshaw and E. O., on the basis of error bounds (remem- 
bering that the actual errors may not be well correlated with the bounds), we note that 
the asymptotic error bound ratio favoring Clenshaw over Horner is in the range [1, 
(1 + '2)n + /2] as was shown in [1]. Since (1 + r/)n+1/2 > 2(3n), we deduce that 
Clenshaw is capable of outperforming Horner by a greater margin than E. 0. On the 
other hand, judging by error bounds, E. 0. consistently outperforms Horner, while 
Clenshaw does not. 

In order to check the validity of the theory, four tests were run. There seems to 
be no way of defiming a set of fair or 'typical' polynomials, so each test was designed 
to prove a point. While each individual test is admittedly loaded, the set of tests 
collectively is thought to present a fair picture. The tests were run at the Oxford 
University Computing Laboratory with 36-bit-mantissa rounded arithmetic. For a 
given method, polynomial and argument, the "error" is taken to be the absolute dif- 
ference between single and double precision evaluations by that method. Hence our 
judgement will not be obscured by the fact that, for example, small computational 
errors might affect the values of iPr The argument range [-1, 1] was split into lal 

"small" (<.75) and Ial "large". In each subrange, 100 equispaced values of a were 
chosen; and the maximal error for each method was determined. The test polynomials 
were 

P1. Z2oxr/r!. (This equisign polynomial should theoretically favor Horner 
against both competitors.) 

P2. T1 O(x), the tenth degree Chebyshev polynomial. (This should favor Clenshaw. 
It is biassed against Horner because no account is taken of vanishing odd-order coef- 
ficients.) 

P3. Same as P2, except that the order of the coefficients is reversed. (Biassed 
against Horner, but otherwise neutral.) 

P4. (1 + x) T1 O(x). (Although there are no missing coefficients, this is still 
biassed against Horner because the signs alternate in pairs. The Horner method works 
best when the signs alternate in ones or are constant.) 

The following table exhibits the maximum errors for each method, polynomial 
and argument range in units of 10-12 to two significant figures. The three methods, 
H, C, E. 0. are ranked in order of merit. 

Comments on empirical results. 
(i) The E. 0. method is consistently best for large lal and consistently second 

best for small lal. If the results for the two lal ranges were merged, the E. 0. method 
would be best on all except P3. 

(ii) The relatively poor performance of the E. 0. method when lal is small is 
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explained by the fact that it is at its worst when Itl = ?, and this occurs at a = 0. The 
other two methods do not encounter their worst argument values of ? 1 when ltl < .75. 

(iii) The theory gives an accurate forecast of when Horner's method will perform 
well or badly. 

(iv) The theory forecasts incorrectly that the Clenshaw method will give best 
results on P2, but the empirical figures do not stand in very sharp contrast to the theory. 

TABLE 

Ictl < .75 Iatl > .75 

H 14 E. G. 22 
P1 E. G. 17 H 27 

C 25 C 43 

C 33 E. G. 53 
P2 E. G. 97 C 150 

H 1300 H 8800 

C 4100 E. G. 1100 
P3 E. G. 4600 C 3600 

H 5000 H 13000 

C 30 E.G. 110 
P4 E. G. 100 C 280 

H 1800 H 14000 

Conclusions. It appears that there is no one method which is better than the 
others over the whole range of polynomials. At present there is no method significantly 
better than Horner's when the coefficients are equisign or of strictly alternating sign; 
however, it has been shown here and in [1] that Horner's method is capable of pro- 
ducing very bad results when these conditions do not hold. In regard to costs, the 
E. G. method requires n + 1 additions and multiplications as compared with n of each 
for Horner's method; however, in a parallel-arithmetic environment the E. G. method 
would run about twice as fast. Several questions arise from this study. Firstly, if an 
advantage can be gained by splitting a polynomial into even and odd parts, why not 
continue and split the even part and odd part each into two, etc.? Secondly, since we 
saw in [1] that Clenshaw is a better "defensive" choice than Horner (i.e. Clenshaw at 
his worst is not as bad as Horner at hiis worst), would it not be better to evaluate L 
and 1' by Clenshaw's method, rather than Horner's, as was done? Thirdly, since the 
success of the E. G. method depends on reduction of argument size, would it not be 
reasonable to generalize it in the following way? The E. G. method replaces P(x) by 
E(t) = xF((t), where t = x2 - ? = (?) T2(x). Why not try replacing P(x) by Q(z) + 
xR(z) + x2S(z), where z = T3(x)/22? None of these variants has been tried, and since 
they are quite numerous it would seem that a systematic study would more appropriately 
be undertaken by a team rather than by an individual. It seems entirely plausible to 
believe that within this domain of possible methods, there is one which will consistently 
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outperform both the established methods while maintaining comparable costs. The 
E. 0. method comes close to doing precisely that, and we have no reason to think it is 
one of the best methods among those that are envisaged. 
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